Nonparametric Regression Analysis of Multivariate Longitudinal Data
نویسندگان
چکیده
Multivariate longitudinal data are common in medical, industrial and social science research. However, statistical analysis of such data in the current literature is restricted to linear or parametric modeling, which is inappropriate for applications in which the assumed parametric models are invalid. On the other hand, all existing nonparametric methods for analyzing longitudinal data are for univariate cases only. When longitudinal data are multivariate, nonparametric modeling becomes challenging, because we need to properly handle the association among the observed data across different time points and across different components of the multivariate response as well. Motivated by a real data from the National Hearth Lung and Blood Institute, this paper proposes a nonparametric modeling approach for analyzing multivariate longitudinal data. Our method is based on multivariate local polynomial smoothing. Both theoretical and numerical results show that it is useful in various cases.
منابع مشابه
A New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملTitle of Dissertation : Nonparametric Quasi - likelihood in Longitudinal Data
Title of Dissertation: Nonparametric Quasi-likelihood in Longitudinal Data Analysis Xiaoping Jiang, Doctor of Philosophy, 2004 Dissertation directed by: Professor Paul J. Smith Statistics Program Department of Mathematics This dissertation proposes a nonparametric quasi-likelihood approach to estimate regression coefficients in the class of generalized linear regression models for longitudinal ...
متن کاملNonparametric Regression Analysis of Longitudinal Data
Nonparametric approaches have recently emerged as a flexible way to model longitudinal data. This entry reviews some of the common nonparametric approaches to incorporate time and other covariate effects for longitudinally observed response data. Smoothing procedures are invoked to estimate the associated nonparametric functions, but the choice of smoothers can vary and is often subjective. Bot...
متن کاملDynamical Correlation for Multivariate Longitudinal Data
Nonparametric methodology for longitudinal data analysis is becoming increasingly popular. The analysis of multivariate longitudinal data, where data on several time courses are recorded per subject, has received considerably less attention, in spite of its importance for practical data analysis. In particular, there is a need for measures and estimates to capture dependency between the compone...
متن کاملNonparametric multivariate conditional distribution and quantile regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...
متن کامل